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LE’ITER TO THE EDITOR 

Invariance and integrability: Henon-Heiles and two coupled 
quartic anharmonic oscillator systems 

R Sahadevan and M Lakshmanan 
Department of Physics, Bharathidasan University, Tiruchirapalli 620 023, Tamilnadu, India 

Received 5 March 1986, in final form 10 July 1986 

Abstract. It is shown that the Htnon-Heiles and two coupled quartic anharmonic oscillator 
systems possess non-trivial generalised Lie symmetries for specific sets of parametric values, 
for which second integrals of motion can also be constructed directly using Noether’s 
theorem, thereby establishing their complete integrability. 

In recent years, considerable effort has been put into identifying integrable dynamical 
systems having both finite and infinite degrees of freedom by employing different 
techniques. It is known that the invariance of evolution equations under Lie transforma- 
tions and generalisations lead to the integrability of the systems (Anderson and 
Ibragimov 1979, Bluman and Cole 1974, Ovjannikov 1982, Lutzky 1978, 1979, 
Lakshmanan and Kaliappan 1983). Recently, Lutzky (1979) has shown that the 
integrals of motion of the finite-dimensional Lagrangian systems can be related to the 
infinitesimal symmetries under extended Lie transformations involving velocity terms 
(see also Sarlet and Cantrijn 1981, Prince 1983). In particular, he considered the 
simple harmonic oscillator problem and derived the associated symmetries having 
velocity dependent terms. In this letter, we consider the HCnon-Heiles and two coupled 
quartic anharmonic oscillator systems and show the existence of non-trivial generalised 
Lie symmetries for specific sets of parametric values at which the so-called PainlevC 
property is also satisfied and for which integrals of motion can be found by direct 
methods (Chang et al 1982, Lakshmanan and Sahadevan 1985). We also present the 
second integrals of motion for each set of Lie symmetries by using Noether’s theorem. 

We consider a Lagrangian system with two degrees of freedom having the form 

L = i ( X 2 + j 2 ) -  V ( x , y )  ( * = d / d t ) .  
The associated Euler- Lagrange equations of motion are 

i = a L / a x  = (Y,(x, y )  j = a L / a y  = a 2 ( x ,  y ) .  
For equations (2) to be invariant under infinitesimal transformations 

x + x = x + &TI( t ,  x, y ,  x, j )  

Y + y=Y +&?)2( t ,  X,Y, X , Y )  

t + T = t + &&(t,  x,  y ,  X, j )  

ij1-x&2&Y1=E(a1) 

ji2 - jg- 2ta2 = E (  a2) 

& << 1 

we require the following invariance conditions (Lutzky 1979) to be satisfied: 

0305-4470/86/ 160949 + 06%02.50 @ 1986 The Institute of Physics 



L950 Letter to the Editor 

where the infinitesimal operator E is given by 

a a a a a 
E = -+ q1 -+ 772 -+ ( 7jl  - &) ,+ ( 7j2 - 6)  -. 

a t  ax ay ax ai) 
In general the non-linear coupled equations (4 )  form an incomplete system in q l ,  

q2 and 6. Therefore, in order to solve (4) ,  we have to assume specific forms for vl, 
q2 and 6. Obviously, one such choice is 6 = constant, q1 = q2 = 0, from which we may 
infer that the Hamiltonian H is a constant of motion (see below). To find the existence 
of other non-trivial symmetries, we may assume ql, q2 and 6 to be polynomials in the 
velocities x and j and then determine the t, x, y dependence consistently. As an 
example, we consider the linear form 

6 = a1 + a2x + a3y (6) 

where ai, bi and ci are functions of (r, x, y) only. Making use of (6) in ( 4 )  and 
equating the various coefficients of xmj", m, n = 1, 2, 3 ,  4, to zero, we obtain a system 
of overdetermined partial differential equations: 

71 = 61 + b2X + 63j q2=c1+c2x+c3j 

a2, = 0 2a2, + a3, = 0 a 2 y y  + 2a3, = 0 a 3 y y  = 0 (7) 

6 2 ,  - (a1Xx + 2a2x1) = 0 (2bzxy + 63,) - 2 ( a i x y  + a 2 y r  + a3xr)  = O  

( b 2 y y  + 263,) - (ai, + 2 a s y t )  = 0 b 3 y y  = 0 

( 6 ~ , + 2 6 2 x r ) - ( ~ ~ 1 x r + a 2 a 1 x + ~ ~ 1 a ~ x + ~ ~ ~ ~ x + ~ ~ r r + ~ ~ ~ ~ ~ x + ~ 2 ~ 2 y ~ ~ ~  

2 ( 6 l x y + b 2 y r + b 3 x r ~ - ~ ~ ~ l y r + ~ ~ ~ l y + ~ ~ ~ ~ ~ y + ~ ~ ~ ~ y + ~ ~ r t + ~ ~ ~ ~ ~ y + ~ ~ ~ ~ ~ x ~ = ~  (86) 

blyy + 2b3,, - 2 ~ ~ 1 ~ 3 ,  = 0 

2 h X r  + b2aix + 3 a l b x  + 6 3 ~ 2 ~  + 62tr +2a263, + a262, 

- (a l r f  +4ala2, +a2a,y+2a2a3r+3a~alx)-(b2a1, + cza,,)=O 
( 8 c )  

2bly, + b2aiy  +201 b y  + b 3 a 2 y  + b3tr + 3 a 2 6 3 y  + a1 b3x 

-2al(aly+ a 3 f )  - ( 6 3 a l x +  c 3 a l y )  = O  

blr,+2a1b2r +2a2b3r + a 1 b I x +  a2bly -2a1(a I f  + a l a z +  a2a3)  - ( b l a l , +  c l a l y )  = 0 
( 8 d )  

(9a) 

c2, = 0 ~ 2 , + 2 ~ 3 x y - 2 ( ~ l x y + ~ 2 y r + ~ 3 x 1 ) = O  

2 ~ 2 x y  + c3xx - (alxx + 2 a 2 x r )  = 0 

C3yy-(alyy+2a3yr) = o  
cI, + 2cZxr - 2a2a2, = 0 

~ ~ ~ ~ x y + ~ ~ y ~ + ~ ~ x ~ ~ - ~ ~ ~ ~ x ~ + ~ ~ ~ ~ x + ~ ~ ~ ~ ~ x + ~ ~ ~ ~ x + ~ ~ ~ ~ + ~ ~ ~ ~ ~ x + 3 ~ ~ ~ ~ , ~  = O  ( 9 b )  

c i y y + 2 c 3 y r  - ( 2 a i , r + a 2 ~ 1 , + 2 ~ 1 ~ 2 y + a 3 a 2 ~ + ~ 3 r r  + S a 2 a 3 y + a l a 3 x )  = o  
( 2 C l x r  + ~ 2 ~ 1 ~ + 3 ~ 1 ~ 2 ~ + ~ 3 ~ 2 ~ + ~ 2 r t + ~ ~ 2 ~ 3 ~  + 0 2 c 2 y )  
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where subscripts denote partial derivatives. By successively solving equations (7)-(9)  
with the help of the equation of motion ( 2 )  we can find the explicit forms of 6, v1 and 
v2 .  Specific results are as follows. 

( a )  He'non- Heiles system 

The Lagrangian: 

L = q x 2 +  2 j 2 )  - f ( A x 2 +  By2)  - (Dx2y -4Cy3). 

The Euler-Lagrange equations are 

x = -Ax - 2Dxy j ;  = -By - Dx2 + Cy2 

where A, B, C and D are parameters. Now, from equation (7 ) ,  we write 

a2 = a20y2 + a21xy + a22x + a23y + a24 
a3 = - a 2 1 ~ 2  - ~ , ~ x y +  a 3 1 ~  + ~ 3 2 ~  + u~~ 

(12) 

(13) 

where the aij are functions of t to be determined. Also from the last and first equations 
of (86 )  and (9b) ,  we obtain for the system ( 1 1 )  

b1= -$Db10(~32- a2ox)xy3+ b11Y2+ b12y-t b13 

c1 = -@,o(~21y + az2)x4+ cllx3 + c12x2+ ~ 1 3 ~  + c14 

(14) 

( 1 5 )  
where the bI i  and c l i  are functions of ( t ,  x )  and ( f ,  y )  respectively. Proceeding further, 
from ( 8 a )  and (9a )  we get 

b3 = b30y + b3 1 c2 = c2ox + c21 . 
Here again the coefficients b3i and cZi are functions of ( f ,  x )  and ( f ,  y )  respectively. 
Making use of equations (12)-(15) in equations (8b )  and (9b) ,  we have 

-4DblO(a3,- azox)xy+2bll  +2b30+2(A+2Dy)(a32-a20)x = 0 (16a) 
- 2 D ~ , o ( ~ 2 , y + ~ 2 2 ) ~ ~ + 6 ~ , , ~ + 2 ~ , 2 + 2 C 2 0 + 2 ( B y + D ~ ~ -  Cy2)(a21~+a22)=0. (16b) 

Equating the different powers of x and y to zero, we get 

a20 = a32 a21 = -a22 bIo = constant b11= -b30 

c11 = o  cl0 = constant c12 = -40. 
(17) 

Continuing this procedure for the remaining equations in (8) and ( 9 )  together with 
equations (12)-(17), we find that the consistency conditions hold for the following 
parametric choices (excluding the trivial case C = D = 0): 

A = B  C = - D  (18a)  

and 

a1 = a2= a3=0 b1= b2 = C, = ~3 = 0 

b3 = constant c2 = constant. 

A, B arbitrary C = - 6 D  
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and 

bl=O 62 = 2(4A - B )  - 8Dy b3 = 4 DX al = a2= a3 = O  
(19b) c , = o  C2=4DX c3 = 0. 

Repeating the above analysis by now considering 6, q1 and q2 as a cubic polynomial 
in 1 and j with 

3 

q2=  c C ' $ i j J  ( i + j ~ 3 )  
i, j=O 

where the ay ,  bij and cu are functions of (2, x, y ) ,  we find that, for the system (1 I),  for 
an additional parametric choice: 

16A= B C = -160 ( 2 1 )  

a.. Y = 0 i,j=O,1,2,3 ( 2 2 0 )  

W b )  

the consistency conditions are fulfilled. Here 

bW=0 blo = 2(A+2Dy)x2 bo1 = -$DX3 b30=4 cl0= -$Dx3 

and the other coefficients vanish. 
Recently, Fordy (1983) has also reported that non-trivial Hamiltonian symmetries 

exist exactly for the same parametric choices isolated above (( 18a), (19a) and (21))  
by deriving the associated commuting Hamiltonian flows. 

( b )  Two coupled quartic anharmonic oscillators 

L = $(X2 + j 2 )  - ( Ax2 + By2 + ax4+ py4+ Sx2yZ) (23a) 

(23b) 

where A, B, a, p and 6 are parameters. Proceeding in an exactly similar fashion as 
that of the Henon-Heiles system above, we verify that there exist four parametric 
choices possessing non-trivial symmetries. We summarise these results in table 1. 

Having obtained the explicit forms of symmetries 5, ql and q 2 ,  we proceed to find 
the associated conserved quantities which are in involution. For this purpose, we make 
use of the fact that, given the infinitesimal symmetries q, , q2 and 5 and the Lagrangian 
L, the conserved quantity, if it exists, may be written as (Noether's theorem) 

x = -2Ax  - 4ax3 - 2sxy2 y = -2 By - 4py3 - 2Sx2y 

Z = ( 61 - 7,) a Llai + (69 - q2)  d L/aj - 5L + f 

E { L} + i~ = j: 

(24) 

where f is to be determined from the equation 

(25) 

For a detailed discussion on the applicability of Noether's theorem to dynamical 
symmetries, we may refer to Sarlet and Cantrijn (1981). Then the second integrals of 
motion take the following forms. 
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Table 1. Infinitesimal symmetries of Htnon-Heiles and two coupled quartic anharmonic 
oscillator (AHO) systems. 

~ 

Infinitesimal symmetries 
Parametric 

System restrictions 6 71 72 

Htnon- Heiles ( U )  A = B , C = - D  0 
( b )  A, B arbitrary, 0 

C = - 6 0  
(c) 16A=B, C = - 1 6 D  0 

Two coupled AHO ( a )  A, B arbitrary, 0 

a = @ ,  s = 2 a  

( b )  A = B ,  a = P ,  6 = 6 a  0 
( c )  A=4B, a=168, 0 

s = 128 

S =68 
( d )  A=4B, cr=8,9, 0 

kY 
4D(x j  - 2 X y )  
+ 2(4A - B)X 

X ’ X  - $ D x ’ ~  
4X3+4(A+2Dy) 

2 Y ( i Y  - x Y )  

+- ( B  - A)X 

ki 
XY 

2 
a 

8 8 ( y X  -2xY)y’ 

ki 
4Dxi 

-$Dx3X 

2 x ( x Y - y X )  

kY 
yX - 2xy 

43’+8(8+By2+6/?x2)y2j, 
- 1 6@xy3X 

( a )  He‘non- Heiles system 

I, = xy + Axy + f D x 3  + Dxy ’ ( 2 6 ~ )  

I b  = - ~ ( Y X - X ~ ~ ) X + ~ A ~ ’ Y + X ~ + ~ X ~ ~ ’ + ( ~ A -  B ) ( x 2 + A x 2 )  (26b)  

I, = X4+2(A+2Dy)~2X2-$D~3Xj+A2~4-$D(A+ Dy)x4y -$D’x6 .  

( b )  Two coupled quartic anharmonic oscillators 

2 
I,  = (xY - Y X ) ~  +- a ( B  - A)($X2+ Ax2 + ax4+  a x 2 y 2 )  (27a)  

I b  = x y + 2 h y + 4 a x y ( x 2 + y 2 )  

I ,  = -xy2 + yxy + 2( B + 4px’ + 2py2)xy’ 

Id = j 4  + 4( B + 6px2  + p y ’ ) y 2 j 2  - 16pxy3Xj + 4py4X2 

+4B(B+4/3x2+2~y2)y4+4p2(2x2+y2)*y4. 

These are indeed exactly the same cases which are found to be integrable through the 
Painlev6 analysis and by a direct search for the second integral of motion (Chang el 
a1 1982, Lakshmanan and Sahadevan 1985). Here, we have succeeded in obtaining 
them through the invariance analysis. 

The work reported here forms part of an Indian National Science Academy research 
project. 
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